Chebyshev Rational Approximations to e^{-x} in [0, $+\infty$) and Applications to Heat-Conduction Problems

W. J. CODY¹

Argonne National Laboratory, Argonne, Illinois 60440

G. MEINARDUS

Institut für Angewandte Mathematik der Universität Erlangen, West Germany

AND

R. S. VARGA²

Case Western Reserve University, Cleveland, Ohio 44106

1. INTRODUCTION

For any nonnegative integer *m*, let π_m denote the collection of all real polynomials of degree at most *m*, and for any nonnegative integers *m* and *n*, let $\pi_{m,n}$ denote the collection of all real rational functions $r_{m,n}(x)$ of the form

$$r_{m,n}(x) \equiv \frac{p_m(x)}{q_n(x)}, \text{ where } p_m \in \pi_m \text{ and } q_n \in \pi_n.$$
 (1.1)

With this notation, let

$$\lambda_{m,n} \equiv \inf_{r_{m,n} \in \pi_{m,n}} \{ \sup_{0 \le x < \infty} |r_{m,n}(x) - e^{-x}| \}, \quad m \le n,$$
(1.2)

be the error associated with the best *Chebyshev rational approximation* in $\pi_{m,n}$ to e^{-x} in $[0, +\infty)$. It is known ([1], p. 55) that there exists a unique $\hat{r}_{m,n}(x) \in \pi_{m,n}$ such that

$$\lambda_{m,n} = \sup_{0 \le x < \infty} |\hat{r}_{m,n}(x) - e^{-x}|.$$
(1.3)

In this paper, we specifically give (in §4) the value of $\lambda_{0,n}$ and $\lambda_{n,n}$ for $0 \le n \le 9$ and $0 \le n \le 14$, respectively, along with the associated minimizing Chebyshev rational approximations $\hat{r}_{n,n}(x)$. These $\lambda_{m,n}$ and $\hat{r}_{n,n}(x)$ were determined because they can be used in the numerical solution of certain heat-conduction problems, and this is illustrated in §3. In a sense, the results of §§3 and 4 continue the original investigation of [7], where only $\lambda_{1,1}$ and $\lambda_{2,2}$ were given.

¹ Work performed under the auspices of the U.S. Atomic Energy Commission.

² This research was supported in part by AEC Grant AT(11-1)-1702.

Finally, because the computed values of $\lambda_{0,n}$ and $\lambda_{n,n}$ appear to decrease geometrically (cf. Tables I and II of §4), we sought to obtain bounds for the quantities σ_1 and σ_2 defined by

$$\sigma_1 = \overline{\lim_{n \to \infty}} \, (\lambda_{0,n})^{1/n}, \tag{1.4}$$

and

$$\sigma_2 = \overline{\lim}_{n \to \infty} (\lambda_{n,n})^{1/n}.$$
 (1.5)

In §2, we establish by elementary methods the inequalities

$$\frac{1}{6} \le \sigma_1 \le \frac{e^{-\alpha}}{2} = 0.43501 \dots$$
 (1.6)

Here, α stands for the real solution of the equation

$$2\alpha e^{2\alpha+1} = 1, \tag{1.7}$$

and α is approximately

$$\alpha=0.13923\ldots$$

Because $\sigma_2 \leq \sigma_1$, (1.6) gives also an upper bound for σ_2 .

The result (1.6) giving bounds for σ_1 , is reminiscent of celebrated results of S. N. Bernstein and J. L. Walsh on Chebyshev approximation of analytic functions by polynomials on finite intervals (cf. [4], Theorems 75 and 76), and by rational functions on closed bounded subsets of the complex plane cf. [8]). In the latter case, asymptotic results for e^{tx} on $-1 \le x \le +1$ are given in [5]. We do not know, however of any similar results about Chebyshev rational approximation on infinite intervals.

2. Upper Bounds for
$$\lambda_{m,n}$$
. Lower Bound for σ_1

1. From the definition in (1.2), it is clear that

$$\lambda_{0,n} \ge \lambda_{1,n} \ge \lambda_{2,n} \ge \dots \ge \lambda_{n,n} > 0 \quad \text{for all } n \ge 0.$$
 (2.1)

In particular, for

$$S_n(x)\equiv\sum_{j=2}^n\frac{x^j}{j!},$$

the *n*th partial sum of e^x , it follows that

$$\lambda_{0,n} \leq \max_{0 \leq x < \infty} |g_n(x)|, \qquad (2.2)$$

where $g_n(x)$ is defined by

$$g_n(x) \equiv \frac{1}{S_n(x)} - e^{-x}.$$
 (2.3)

We establish

LEMMA 1. For any integer $n \ge 0$, we have

$$0 \leq g_n(x) \leq \frac{1}{2^n} \quad for \ x \geq 0. \tag{2.4}$$

Proof. Obviously,

Now, let $n \ge 1$. Since

$$g_n(0)=0.$$

 $e^x > S_n(x) \qquad \text{for } x > 0,$

it follows that

$$g_n(x) > 0$$
 for $x > 0$.

Let ξ be a positive number at which $g_n(x)$ possesses its maximum in $[0, \infty)$.

$$\frac{S_n'(\xi)}{S_n^{2}(\xi)} = e^{-\xi}.$$

Because of

$$S_n'(x) = S_{n-1}(x),$$

this implies that

$$(g_n(\xi) + e^{-\xi})^2 = e^{-\xi}(g_{n-1}(\xi) + e^{-\xi}).$$

Taking square roots, we derive that

$$0 \leq g_n(\xi) = e^{-\xi} \{ [1 + g_{n-1}(\xi) e^{\xi}]^{1/2} - 1 \}$$

$$< e^{-\xi} \cdot \frac{1}{2} g_{n-1}(\xi) e^{\xi} = \frac{1}{2} g_{n-1}(\xi).$$

Therefore,

$$0 \leq g_n(x) < \frac{1}{2} \max_{\substack{0 \leq x < \infty}} g_{n-1}(x) \quad \text{for all } x \leq 0.$$
 (2.5)

Thus, as

 $\max_{0\leq x<\infty}|g_0(x)|=1,$

then (2.4) follows by induction.

LEMMA 2. For any integer $n \ge 0$, we have

$$\max_{0 \le x < \infty} \left| \frac{e^{-\alpha n}}{S_n(x - \alpha n)} - e^{-x} \right| \le \frac{1}{(2e^{\alpha})^n},$$
(2.6)

 α being the real solution of (1.7).

Q.E.D.

Proof. We shall prove that

$$|g_n(x)| \leq \frac{1}{2^n}$$

holds not only for $x \ge 0$, but even for $x \ge -\alpha n$. Then, putting

$$x = t - \alpha n$$
,

it follows that

$$\frac{1}{S_n(t-\alpha n)}-e^{-(t-\alpha n)}\bigg|\leqslant \frac{1}{2^n}\qquad\text{for all }t\ge 0,$$

which gives (2.6).

To prove the above reduced proposition, let $n \ge 1$. Writing

$$S_n(-y) = e^{-y} - \sum_{j=n+1}^{\infty} (-1)^j \frac{y^j}{j!},$$

we see that for $0 < y \le \alpha n < n + 1$, the above series is an alternating series whose terms decrease in modulus monotonically to zero. This gives us that

$$e^{-y} < S_n(-y) < e^{-y} + \frac{y^{n+1}}{(n+1)!}, \quad n \text{ even},$$
 (2.7)

and

$$e^{-y} - \frac{y^{n+1}}{(n+1)!} < S_n(-y) < e^{-y}, \quad n \text{ odd},$$
 (2.8)

for $0 < y \le \alpha n$. To obtain a (positive) lower bound for the left side of (2.8) for $0 < y \le \alpha n$, we observe that

$$e^{-y} - \frac{y^{n+1}}{(n+1)!} \ge e^{-\alpha n} - \frac{(\alpha n)^{n+1}}{(n+1)!} = \frac{n^{n+1}}{(n+1)!} \left\{ \frac{(n+1)! e^{-\alpha n}}{n^{n+1}} - \alpha^{n+1} \right\}$$
$$> \frac{n^{n+1} e^{-(1+\alpha)n}}{(n+1)!} \left\{ \sqrt{2\pi n} - \alpha (\alpha e^{1+\alpha})^n \right\},$$

the last inequality following from Stirling's inequality. But since

$$\alpha e^{\alpha+1}=\frac{1}{2e^{\alpha}}$$

from (1.7), and

$$\left\{\sqrt{2\pi n} - \alpha \left(\frac{1}{2e^{\alpha}}\right)^n\right\} > 1$$

for all $n \ge 1$, then

$$e^{-y} - \frac{y^{n+1}}{(n+1)!} > \frac{n^{n+1}e^{-(1+\alpha)n}}{(n+1)!} \quad \text{for all } n \ge 1, \quad 0 < y \le \alpha n.$$
 (2.9)

The inequalities (2.8), (2.9) imply for odd *n* that

$$0 < \frac{1}{S_n(-y)} - e^y < \frac{1}{e^{-y} - \frac{y^{n+1}}{(n+1)!}} - e^y$$
$$= \frac{y^{n+1} e^y}{(n+1)! \left(e^{-y} - \frac{y^{n+1}}{(n+1)!}\right)}$$
$$\leq \frac{\alpha^{n+1} n^{n+1} e^{\alpha n}}{n^{n+1} e^{-(1+\alpha)n}} = \alpha (\alpha e^{(2\alpha+1)})^n = \frac{\alpha}{2^n}.$$

Consequently,

$$0 < \frac{1}{S_n(-y)} - e^y < \frac{1}{2^n} \quad \text{for } n \text{ odd}, \quad 0 < y \leq \alpha n. \quad (2.10)$$

For *n* even, one similarly arrives at

$$0 > \frac{1}{S_n(-y)} - e^y > -\frac{y^{n+1}}{(n+1)!} e^{2y}$$

$$\geq -\frac{n^{n+1}e^{-n}}{(n+1)!} \alpha (\alpha e^{(2\alpha+1)})^n$$

$$> -\frac{\alpha}{2^n}.$$

Consequently

$$0 > \frac{1}{S_n(-y)} - e^y > -\frac{1}{2^n} \qquad \text{for } n \text{ even}, \qquad 0 < y \leq \alpha n, \qquad (2.11)$$

and (2.10) and (2.11) imply the desired inequality (2.6) Q.E.D.

Lemma 2 directly gives us

THEOREM 1. For any integer $n \ge 0$, we have

$$0 < \lambda_{n,n} \leq \lambda_{n-1,n} \leq \cdots \leq \lambda_{0,n} \leq \frac{1}{(2e^{\alpha})^n}, \qquad (2.12)$$

where α is the solution of (1.7).

COROLLARY. Let $\{m(n)\}_{n=0}^{\infty}$ be any sequence of nonnegative integers such that $0 \le m(n) \le n$ for each $n \ge 0$. Then,

$$\overline{\lim_{n \to \infty}} \, (\lambda_{m(n),n})^{1/n} \leqslant \frac{e^{-\alpha}}{2} = 0.43501 \dots$$
 (2.13)

2. Now, we want to show that at least in the case m = 0, the speed of convergence of the sequence $\lambda_{m,n}$ is not greater than geometric. Again, we need two lemmas. First, we introduce the quantity

$$K_n = \min_{P_n \in \pi_n} \left\{ \max_{0 \le x \le 2n/3} |P_n(x) - e^x| \right\}.$$
 (2.14)

LEMMA 3. Suppose that there exists a sequence of polynomials $\{Q_n(x)\}_{n=0}^{\infty}$ with $Q_n(x) \in \pi_n$ for all $n \ge 0$, a real number $q \ge 2$, and an integer n_0 such that

$$\left|\frac{1}{Q_n(x)} - e^{-x}\right| \le \frac{1}{q^n} \quad \text{for all } x \ge 0 \text{ and for all } n \ge n_0. \tag{2.15}$$

Then,

$$K_n \leq \frac{(e^{2/3})^n}{(q e^{-2/3})^n - 1} \quad \text{for } n \geq n_0.$$
 (2.16)

Proof. First, observe that $e^{2/3} < 2$. Then, from (2.15), it follows for $0 \le x \le \frac{2}{3}n, n > n_0$, that

$$0 < e^{-x} - q^{-n} \leq \frac{1}{Q_n(x)} \leq e^{-x} + q^{-n},$$

and therefore

$$-\frac{e^x}{e^{-x}q^n+1} \leq Q_n(x)-e^x \leq \frac{e^x}{e^{-x}q^n-1}.$$

Thus,

$$|Q_n(x) - e^x| \leq \frac{(e^{2/3})^n}{(q e^{-2/3})^n - 1}$$
 for $0 \leq x \leq \frac{2}{3}n$, $n \leq n_0$,

from which (2.16) is evident.

LEMMA 4. For any integer $n \ge 0$,

$$K_n > \frac{e^{n/3} n^{n+1}}{3 \cdot 6^n (n+1)}.$$
 (2.17)

Proof. Writing

$$x=\frac{n}{3}(t+1),$$

we see that

$$K_n = \inf_{\widetilde{P}_n \in \pi_n} \left\{ \sup_{-1 \leq t \leq +1} |\widetilde{P}_n(t) - e^{n(t+1)/3}| \right\}.$$

,

Q.E.D.

For $t \in [-1, +1]$, we have the representation

$$e^{n(t+1)/3} = e^{n/3} \left(I_0\left(\frac{n}{3}\right) + 2\sum_{\nu=1}^{\infty} I_{\nu}\left(\frac{n}{3}\right) T_{\nu}(t) \right).$$

Here, $T_{\nu}(t)$ denotes the ν -th-Chebyshev polynomial of the first kind and

$$I_{\nu}(z) \equiv \sum_{\mu=0}^{\infty} \frac{(z/2)^{2\mu+\nu}}{\mu!(\nu+\mu)!}$$

is the Bessel function of order ν with so-called purely imaginary argument. Obviously,

$$I_{\nu}(x) > 0 \qquad \text{for } x > 0.$$

By a theorem of Hornecker (cf. [4], Theorem 66), then

$$K_n \ge 2 e^{n/3} \sum_{\mu=0}^{\infty} I_{(2\mu+1)(n+1)}\left(\frac{n}{3}\right).$$

Since

$$I_{n+1}\left(\frac{n}{3}\right) > \frac{n^{n+1}}{6^{n+1}(n+1)!},$$

it follows that

$$K_n > 2 e^{n/3} I_{n+1}\left(\frac{n}{3}\right) > \frac{e^{n/3} n^{n+1}}{3 \cdot 6^n (n+1)!},$$

which establishes (2.17).

Now, we are able to prove

THEOREM 2. For the quantity σ_1 defined in (1.4), we have

$$\sigma_1 \ge \frac{1}{6}.\tag{2.18}$$

Proof. By Theorem 1, we know already

For every number q with

$$\sigma_1 < \frac{1}{q} < \frac{1}{2},$$
 (2.19)

there exists, by the definition of σ_1 , a sequence of polynomials $Q_n(x)$ and an integer n_0 such that the assumptions of Lemma 3 are satisfied. Combining (2.16) and (2.17) we see that for all $n \ge n_0$, the inequality

 $\sigma_1 < \frac{1}{2}$.

$$\frac{e^{n/3} n^{n+1}}{3 \cdot 6^n (n+1)!} < \frac{e^{2/3n}}{(q e^{-2/3})^n - 1}$$

Q.E.D.

must hold. Using Stirling's formula, i.e.,

$$n! < \sqrt{2\pi n} n^n e^{-n} \left(1 + \frac{1}{4n}\right),$$

leads to

$$g^n < (e^{2/3})^n + 3\left[\left(\frac{n+1}{n}\right)6^n\sqrt{2\pi n}\right]\left(1+\frac{1}{4n}\right), \qquad n \ge n_0$$

Thus, as $e^{2/3} < 2$, it is clear that the above inequality is valid for all $n \ge n_0$ only if

 $q \leq 6$.

Since q is an arbitrary number which has only to satisfy the inequalities (2.19), it is obvious that

$$\sigma_1 \ge \frac{1}{6}.$$
 Q.E.D.

3. Applications to Heat-Conduction Problems

We begin with the matrix differential equation

$$B\frac{d\mathbf{c}(t)}{dt} = -A\mathbf{c}(t) + \mathbf{g}, \qquad t > 0, \qquad (3.1)$$

subject to the initial condition

$$\mathbf{c}(0) = \mathbf{\tilde{c}}.\tag{3.2}$$

Here, A and B are assumed to be commuting Hermitian and positive definite $N \times N$ matrices, and $\tilde{c} = (\tilde{c}_1, \tilde{c}_2, ..., \tilde{c}_N)^T$. The solution $\mathbf{c}(t)$ of (3.1)–(3.2) can be verified to be

$$\mathbf{c}(t) = A^{-1}\mathbf{g} + \exp\left(-tB^{-1}A\right)\{\mathbf{\tilde{c}} - A^{-1}\mathbf{g}\}, \quad \text{for all } t \ge 0.$$
(3.3)

For any fixed nonnegative integers *m* and *n* with $0 \le m \le n$, let $\hat{r}_{m,n}(x) \equiv \hat{p}_{m,n}(x)/\hat{q}_{m,n}(x)$ denote the (m,n)-th Chebyshev rational approximation of e^{-x} in $[0, +\infty)$, i.e.,

$$\sup_{0 \le x < \infty} |\hat{r}_{m,n}(x) - e^{-x}| = \lambda_{m,n},$$
(3.4)

where $\lambda_{m,n}$ is defined in (1.2). Then, we define the (m,n)-th Chebyshev approximation $\mathbf{c}_{m,n}(t)$ of $\mathbf{c}(t)$ in (3.3), by

$$\mathbf{c}_{m,n}(t) = A^{-1} \mathbf{g} + \hat{r}_{m,n}(tB^{-1}A) \{ \mathbf{\tilde{c}} - A^{-1} \mathbf{g} \}, \text{ for all } t \ge 0, \qquad (3.5)$$

where $\hat{r}_{m,n}(tB^{-1}A)$ is the matrix formally given by

$$(\hat{q}_{m,n}(tB^{-1}A))^{-1} \cdot (\hat{p}_{m,n}(tB^{-1}A)).$$

From (3.3) and (3.5), we have

$$\mathbf{c}_{m,n}(t) - \mathbf{c}(t) = (\hat{r}_{m,n}(tB^{-1}A) - \exp(-tB^{-1}A))\{\mathbf{\tilde{c}} - A^{-1}\mathbf{g}\}, \quad t \ge 0.$$
(3.6)

We now associate with the positive definite Hermitian matrix B of (3.1), the particular vector norm

$$\|\mathbf{c}\|_{B^{2}} \equiv \mathbf{c}^{*}B\mathbf{c} = \|B^{1/2}\mathbf{c}\|_{2}^{2}, \text{ where } \|\mathbf{v}\|_{2}^{2} \equiv \mathbf{v}^{*} \cdot \mathbf{v}.$$
 (3.7)

For any $N \times N$ matrix D, the induced operator norm of D is then

$$||D||_{B} \equiv \sup_{\mathbf{x}\neq\mathbf{0}} \frac{||D\mathbf{x}||_{B}}{||\mathbf{x}||_{B}} = ||B^{1/2} DB^{-1/2}||_{2} \equiv \sup_{\mathbf{x}\neq\mathbf{0}} \frac{||B^{1/2} DB^{-1/2} \mathbf{x}||_{2}}{||\mathbf{x}||_{2}}.$$

Using the facts that A and B are commuting Hermitian matrices, and the polynomials $\hat{p}_{m,n}(x)$ and $\hat{q}_{m,n}(x)$ are both real, we can write

$$\|\hat{r}_{m,n}(tB^{-1}A) - \exp(-tB^{-1}A)\|_{B} = \|\hat{r}_{m,n}(tB^{-1}A) - \exp(-tB^{-1}A)\|_{2}$$
$$= \max_{1 \le i \le N} |\hat{r}_{m,n}(t\lambda_{i}) - e^{-t\lambda_{i}}|, \quad \text{for all } t \ge 0,$$

where $\{\lambda_i\}_{i=1}^N$ denote the positive eigenvalues of $B^{-1}A$. But as $t\lambda_i \in [0, +\infty)$ for any nonnegative t and any eigenvalue λ_i , we evidently have from (3.4) that

$$\|\hat{r}_{m,n}(tB^{-1}A) - \exp(-tB^{-1}A)\|_{B} \leq \lambda_{m,n}, \quad \text{for all } t \ge 0.$$
 (3.8)

Thus, taking norms in (3.6), gives us the global error bound

$$\|\mathbf{c}_{m,n}(t) - \mathbf{c}(t)\|_{B} \leq \lambda_{m,n} \|\mathbf{\tilde{c}} - A^{-1}\mathbf{g}\|_{B}, \quad \text{for all } t \geq 0.$$
(3.9)

To indicate how the inequality (3.9) can be used in the numerical solution of parabolic partial differential equations, we consider here the solution u(x, t) of the simple one-dimensional heat-conduction problem

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} + r(x), \qquad 0 < x < 1, \qquad t > 0, \tag{3.10}$$

subject to the boundary conditions

$$u(0, t) = u(1, t) = 0,$$
 for all $t > 0,$ (3.11)

and the initial condition

$$u(x,0) = \tilde{u}(x), \quad 0 \le x \le 1,$$
 (3.12)

where r(x) and $\tilde{u}(x)$ are given real functions on [0, 1]. We remark that similar applications are valid in higher dimensions.

For any fixed positive integer N, let h = 1/(N+1), and let $\{w_i(x)\}_{i=1}^N$ be the piecewise-linear functions defined by

$$w_{i}(x) = \begin{cases} 1 - \left(\frac{x - ih}{h}\right), & ih \le x \le (i+1)h, \\ 1 + \left(\frac{x - ih}{h}\right), & (i-1)h \le x \le ih, \\ 0, & x \notin [(i-1)h, (i+1)h] \end{cases}, \quad 1 \le i \le N.$$
(3.13)

The set S of all real linear combinations of the $w_i(x)$'s is known in the literature as an *Hermite space* (cf. [2], §6). All functions of S vanish at the endpoints of [0, 1].

The semi-discrete Galerkin approximation (cf. [6])

$$\hat{w}(x,t) \equiv \sum_{i=1}^{N} c_i(t) w_i(x), \qquad 0 \le x \le 1, \qquad t \ge 0,$$
(3.14)

of the solution u(x,t) of (3.10)–(3.12), is determined by solving the matrix differential equation (3.1)–(3.2) for the functions $c_i(t)$, $1 \le i \le N$, where the matrices $B = (b_{i,j})$ and $A = (a_{i,j})$ have their entries explicitly defined by

$$b_{i,j} = \int_0^1 w_i(x) w_j(x) dx; \qquad a_{i,j} = \int_0^1 w_i'(x) w_j'(x) dx, \qquad 1 \le i, j \le N, \quad (3.15)$$

and where the vector **g** of (3.1) has components g_i defined by

$$g_i = \int_0^1 r(x) w_i(x) dx, \quad 1 \le i \le N.$$
 (3.16)

The vector $\tilde{\mathbf{c}}$ of (3.2) is determined from the coefficients of the best L^2 -approximation in S of $\tilde{u}(x)$ of (3.12), i.e.,

$$\inf_{s \in S} \left\| \tilde{u} - s \right\|_{L^{2}[0,1]} = \left\| \tilde{u}(x) - \sum_{i=1}^{N} \tilde{c}_{i} w_{i}(x) \right\|_{L^{2}[0,1]}.$$
(3.17)

From (3.15), it can be verified that A and B are commuting real tridiagonal symmetric positive definite matrices, so that the inequality of (3.9) is applicable.

Based on energy-type inequalities, it can be deduced from [6], Theorem 1, that for r(x) of (3.10) and $\tilde{u}(x)$ of (3.12) sufficiently smooth, there exists a constant K, independent of h and t, such that

$$\|\hat{w}(\cdot,t) - u(\cdot,t)\|_{L^{2}[0,1]} \leq Kh^{2}, \quad \text{for all } t \ge 0.$$
(3.18)

On the other hand, for any $0 \le m \le n$, define the (m, n)th Chebyshev-Galerkin approximation of the solution of (3.10)–(3.12), as

$$\hat{w}_{m,n}(x,t) \equiv \sum_{i=1}^{N} c_{m,n,i}(t) w_i(x), \qquad (3.19)$$

where the functions $c_{m,n,i}(t)$ are the components of the vector $\mathbf{c}_{m,n}(t)$ of (3.5). Now, using the definitions of (3.7) and (3.15), we verify that

$$\|\hat{w}_{m,n}(\cdot,t) - \hat{w}(\cdot,t)\|_{L^{2}[0,1]}^{2} = \int_{0}^{1} \left\{ \sum_{i=1}^{N} \left(c_{m,n,i}(t) - c_{i}(t) \right) w_{i}(x) \right\}^{2} dx$$
$$= \|\mathbf{c}_{m,n}(t) - \mathbf{c}(t)\|_{B}^{2}.$$
(3.20)

Hence, from (3.9), we have

 $\|\hat{w}_{m,n}(\cdot,t) - \hat{w}(\cdot,t)\|_{L^{2}[0,1]} \leq \lambda_{m,n} \|\tilde{\mathbf{c}} - A^{-1}\mathbf{g}\|_{B}, \quad \text{for all } t \ge 0. \quad (3.21)$ Thus, combining (3.18) and (3.21) gives

 $\|\hat{w}_{m,n}(\cdot,t) - u(\cdot,t)\|_{L^{2}[0,1]} \leq Kh^{2} + \lambda_{m,n} \|\tilde{\mathbf{c}} - A^{-1}\mathbf{g}\|_{B}$, for all $t \geq 0$. (3.22) The point of this global error analysis is that $\hat{w}_{m,n}(x,t)$ can be calculated for *any* $t \geq 0$ in just one step, in contrast with standard difference methods which arrive at an approximation for $u(x, m\Delta t)$ only after all intermediate approximations of $u(x, j\Delta t)$, $1 \leq j \leq m$, are computed.

We also remark that the difficult part in determining $\mathbf{c}_{m,n}(t)$ of (3.5) consists of solving the linear system of equations:

$$\hat{q}_{m,n}(tB^{-1}A)(\mathbf{c}_{m,n}(t) - A^{-1}\mathbf{g}) = \hat{p}_{m,n}(tB^{-1}A)(\mathbf{\tilde{c}} - A^{-1}\mathbf{q}).$$
(3.23)

Since $\hat{p}_{m,n}(tB^{-1}A)$ enters into the computation of $\mathbf{c}_{m,n}(t)$ only as a matrix factor, there is little to be gained computationally by choosing m < n in (3.5). For this basic reason, we were initially interested in the values of $\lambda_{n,n}$, as in [7].

4. The Constants $\lambda_{n,n}$ and $\lambda_{0,n}$

In this section, we give the explicit values of $\lambda_{0,n}$, $0 \le n \le 9$, in Table I, and of $\lambda_{n,n}$, $0 \le n \le 14$, in Table II. These numbers (and the associated rational functions $\hat{r}_{n,n}(x)$) were determined by using a Remez-type algorithm ([9], p. 173). The actual algorithm used is fully described in Cody, Fraser, and Hart [3].

TABLE I			
n	$\lambda_{0,n}$		
0	5.000 (-01)		
1	9.357 (02)		
2	2.307 (-02)		
3	6.353 (-03)		
4	1.848 (03)		
5	5.553 (04)		
6	1.703 (04)		
7	5.294 (-05)		
8	1.663 (05)		
9	5.264 (06)		

n	$\lambda_{n,n}$
0	5.000 (01)
1	6.685 (-02)
2	7.359 (-03)
3	7.994 (04)
4	8.653 (05)
5	9.346 (06)
6	1.008 (06)
7	1.087 (07)
8	1.172 (08)
9	1.263 (09)
10	1.361 (10)
11	1.466 (-11)
12	1.579 (-12)
13	1.701 (-13)
14	1.832 (-14)

TABLE II

The following functions $r_{n,n}(x)$, $0 \le n \le 14$, constitute a partial Walsh Table (cf. [4], p. 162) for Chebyshev rational approximations of e^{-x} in $[0, +\infty)$.

		$e^{-x} \simeq \sum_{i=0}^{n} p_i x^i$	$\int_{i=0}^{n} q_i x^i,$	$0 \leq x < \infty$	
*****	*****	*****	*******	*****	*********
i		p_i			q_i
*****	*****	*****	*****	*****	*******
			n = 1		
*****	*****	*****	******	*****	*******
0	1.0669		(00)	1.0000	(00)
1	-1.1535		(01)	1.7275	(00)
*****	*****	*****	*****	****	******
			n = 2		
*****	******	*****	*******	******	*******
0	9.92641		(01)	1.00000	(00)
1	-1.88332		(-01)	6.69295	(01)
2	4.21096		(-03)	5.72258	(-01)
*****	*****	*****	*****	****	***********
			n = 3		

0	1.00079 9		(00)	1.00000 0	(00)
1	-2.23657 8		(-01)	7.98292 3	(01)
2	1.24996 2		(02)	2.20411 5	(01)
3	-9.98100 9		(-05)	1.24858 0	(-01)
*****	*****	*****	******	****	*******

TABLE III

CODY, MEINARDUS, AND VARGA

TABLE III—continued

i		<i>p</i> _i		q_i
*****	*****	******	****	*****
		<i>n</i> = 4	· ·	
*****	*****	****	*****	*****
0	0.00012.47	(01)	1 00000 00	(00)
1	9.99913 47	(01)	7 56692 22	(00)
2	-2.40233 73	(-01)	7,30083 22	(-01)
2	1.84003 09	(-02)	2.91/34 08	(01)
3	-4.49812 30	(04)	4.5750212	(-02)
4	1.0/031 42	(-06)	1.93709 80	(02)
*****	*****	***********	*****	******
		n = 5		2.1
*****	*****	*****	*****	*******
0	1,00000 935	(00)	1,00000 000	(00)
1	-2.50230 902	(-01)	7.50174 555	(-01)
2	2.24805 919	(-02)	2.69910 157	(-01)
3	-8.33629 264	(-04)	6.76687 392	(-02)
4	1.07797 622	(05)	6.93457 968	(-03)
5	-2.19125 327	(-08)	2.34468 866	(-03)
*****	*****	*****	*****	*****
		n – 6		****************
		n = 0		
*****	****	******	******	******
0	9,99998 991	(-01)	1,00000 000	(00)
1	-2.56774 988	(01)	7.43173 208	(-01)
2	2.53896 499	(-02)	2.68982 436	(-01)
3	-1.17690 441	(-03)	6.15930 326	(-02)
4	2.48209 105	(05)	1.13649 362	(-02)
5	-1.90699 255	(-07)	8.25674 222	(04)
6	2.34264 503	(-10)	2.32303 566	(-04)
*****	*****	*****	*****	******
		<i>n</i> = 7		
******	*****	******	*****	*****
0	1.00000.0109	(00)	1 00000 0000	(00)
1	-2.61399 8104	(-01)	7.38606 6424	(-01)
2	2,75489 3180	(-02)	2.66094 7238	(01)
3	-1.46758 9943	(03)	6.22100 6831	(02)
4	4.06054 4787	(05)	1.02296 0372	(-02)
5	-5.37067 6308	(-07)	1,48784 8134	(-03)
6	2.65391 0891	(09)	8,08876 9796	(-05)
7	-2.11893 3743	(-12)	1.94833 4848	(05)
******	****	*****	****	*****

CHEBYSHEV RATIONAL APPROXIMATIONS

TABLE III—continued

****	******	*****	*****	*****	
i	<i>p</i> i			<i>q</i> i	
*****	******	*****	*******	*****	
		<i>n</i> = 8	×		
*****	*****	****	*****	*****	
0	9,99999,98828	(01)	1 00000 00000	(00)	
ĩ	-2 64834 06521	(01)	7 35165 14516	(01)	
2	2 92069 90785	(01)	2 64380 63240	(-01)	
2	-1 71076 69530	(-02)	6 17188 04886	(-02)	
4	5 63076 21623	(05)	1 05208 36925	(-02)	
5	-1 01477 31374	(05)	1 27824 67247	(02)	
5	0 00120 46140	(-00)	1.52054 02547	(-03)	
7	2 02122 40140	(-09)	4 70707 00020	(-04)	
0	-3.03122 44003	(-11)	0.72702 00035	(-00)	
ð	1.000/8 92/88	(-14)	1,410// 20015	(-06)	
*****	******	*****	******	******	
		<i>n</i> = 9			
*****	****	*****	*****	****	
0	1.00000 00012 6	(00)	1,00000 00000 0	(00)	
1	-2.67485 66991 9	(01)	7.32514 42527 7	(01)	
2	3.05175 28366 6	(02)	2.63030 80259 5	(01)	
3	-1.91477 63922 5	(03)	6.15308 52837 4	(-02)	
4	7.11036 34252 9	(-05)	1.04926 24819 4	(02)	
5	-1.56780 17352 5	(06)	1.39500 66714 0	(03)	
6	1.95356 66646 4	(08)	1,41160 60689 2	(04)	
7	-1.22095 56914 1	(-10)	1.43514 07391 1	(-05)	
8	2.92870 66373 4	(-13)	4.85965 89227 3	(07)	
9	-1.14850 40902 2	(-16)	9.09160 46659 0	(-08)	
*****	*****	*****	****	****	
		<i>n</i> – 10			
		n = 10			
*****	**************	******	********	*******	
0	9,99999 99986 39	(01)	1.00000 00000 00	(00)	
1	-2.69593 55382 19	(-01)	7.30406 43483 33	(-01)	
2	3.15778 64047 17	(02)	2.61984 45116 28	(-01)	
3	-2.08723 02875 56	(-03)	6.13598 785 24 81	(-02)	
4	8.46946 26115 79	(-05)	1.05222 25667 19	(02)	
5	-2.15295 78934 24	(-06)	1.40044 18324 30	(03)	
6	3.35954 01052 85	(-08)	1.51629 42863 89	(04)	
7	-3.02437 91657 93	(-10)	1.26706 04218 95	(05)	
8	1.38351 22001 13	(-12)	1.11798 57266 64	(06)	
9	-2.44794 47827 24	(-15)	3.10240 81250 45	(08)	
10	7.10595 74433 07	(-19)	5.22077 71857 74	(-09)	

	***		. 7
ARLE	1	continue	1

*****	******	*******	******	****
i	p_i		q_i	
*****	*******	******	******	****
		<i>n</i> = 11		
*****	*******	*******	******	****
0	1.00000 00000 147	(00)	1,00000 00000 000	(00)
1	-2.71308 69737 149	(01)	7.28691 30396 820	(01)
2	3.24525 83980 923	(02)	2.61143 86818 246	(-01)
3	-2.23434 38385 867	(-03)	6.12306 52273 991	(-02)
4	9.70327 53192 328	(05)	1.05372 96909 746	(02)
5	-2.74176 69166 461	(06)	1.41501 45103 337	(03)
6	5.02362 65041 453	(-08)	1,53331 52911 587	(04)
7	-5.77549 91658 630	(-10)	1.39348 62063 194	(05)
8	3.88619 42441 125	(-12)	9.83157 36139 162	(-07)
9	-1.34133 12302 919	(-14)	7.65774 19206 722	(08)
10	1.80098 07948 555	(-17)	1.77400 34787 683	(09)
11	-3,97762 94455 404	(-21)	2.71280 51110 139	(-10)
*****	*****	****	****	*****
		n = 12		
*****	*****	****	******	*****
0	9,99999 99999 8420	(01)	1.00000 00000 0000	(00)
1	-2.72732 01038 1007	(01)	7.27267 98946 2094	(01)
2	3.31862 74887 8945	(02)	2.60454 26687 4069	(01)
3	-2.36102 86093 3434	(-03)	6.11258 94397 4162	(02)
4	1.08182 04721 4783	(04)	1.05516 59564 1775	(-02)
5	-3.31706 70455 2847	(-06)	1.42483 77048 4151	(03)
6	6.85640 06647 2736	(-08)	1,56277 80799 5398	(04)
7	-9.40255 67465 0549	(-10)	1.41984 90819 4392	(05)
8	8.21592 17852 2494	(-12)	1,10762 17782 0598	(06)
9	-4.24605 37294 1828	(-14)	6.71223 49299 4341	(-08)
10	1,13357 45322 5507	(-16)	4.67724 66320 0848	(09)
11	-1.18241 93272 9819	(-19)	9.18591 91007 0282	(-11)
12	2 03287 74252 3846	(-23)	1 28708 77757 5584	(-11)
******	*****	*****	*****	*****
		n = 13		
*****	******	*****	******	*****
0	1.00000 00000 00170	(00)	1.00000 00000 00000	(00)
1	-2.73931 40321 02750	(01)	7.26068 59680 79845	(-01)
2	3.38101 16410 46875	(02)	2.59878 71290 03795	(-01)
3	-2.47106 93187 70823	(-03)	6,10400 14004 83738	(-02)
4	1.18246 13397 91637	(04)	1.05636 62149 46976	(-02)
5	-3.86917 56932 66464	(06)	1.43339 64981 47585	(-03)
6	8.78467 34854 71303	(-08)	1.58368 07943 13270	(04)
7	-1.37667 89576 47893	(09)	1.46094 52103 19625	(05)
8	1.45460 93630 79049	(-11)	1.13726 98219 71446	(06)
9	-9.90411 24433 78351	(-14)	7,74828 74238 93217	(08)
10	4.02014 83515 52472	(-16)	4.08864 75641 62874	(09)
11	-8.47538 24867 61699	(–19)	2.57666 92606 40894	(-10)
12	7.00505 36680 34527	(-22)	4.34551 90724 16265	(-12)
13	-9.55806 72950 74149	(-26)	5.61852 05844 48164	(-13)
******	*****	*****	******	*****

i	p_i		91		
*****	******	*****	******	******	
		<i>n</i> = 14			
*****	****	*****	****	****	
0	9.99999 99999 99816 8	(01)	1.00000 00000 00000 0	(00)	
1	-2.74956 04296 30004 3	(01)	7.25043 95703 48866 6	(-01)	
2	3.43469 84175 67147 5	(02)	2.59390 94125 01801 2	(-01)	
3	-2.56744 39819 02861 8	(03)	6.09681 85127 28359 5	(-02)	
4	1.27340 70715 23318 1	(04)	1.05740 49161 69115 6	(02)	
5	-4.39328 08492 51123 6	(-06)	1.44055 27154 58731 6	(-03)	
6	1.07532 02054 48522 7	(07)	1.60192 11440 61219 0	(04)	
7	-1.87102 55961 08945 3	(09)	1.49082 34724 80024 2	(05)	
8	2.28495 15765 30015 5	(-11)	1.18202 91576 35577 2	(06)	
9	-1.90386 40942 83534 5	(-13)	8.01639 97982 35750 3	(-08)	
10	1.03101 51365 35049 5	(-15)	4.83618 00878 64828 1	(-09)	
11	-3.34902 80333 66753 3	(-18)	2.24720 30400 42852 9	(-10)	
12	5.67438 25539 52350 1	(21)	1.29228 02705 79277 9	(-11)	
13	-3.77945 23874 50329 5	(24)	1.89218 38854 02244 9	(-13)	
14	4.16098 26642 37661 3	(-28)	2.27106 80218 89129 5	(-14)	

TABLE III—continued

References

- 1. N. I. ACHIESER, "Theory of Approximation." Frederick Ungar Publishing Co., New York, 1956. Translated by C. J. Hyman.
- P. G. CIARLET, M. H. SCHULTZ, AND R. S. VARGA, Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. *Numer. Math.* 9 (1967), 394–430.
- 3. W. J. CODY, W. FRASER, AND J. F. HART, Rational Chebyshev approximation using linear equations. *Numer. Math.* To appear.
- GÜNTER MEINARDUS, "Approximation of Functions: Theory and Numerical Methods." Springer-Verlag, New York, 1967. Translated by L. L. Schumaker.
- GÜNTER MEINARDUS, Abschätzungen der Minimalabweichung bei rationaler Approximation. In "Funktionalanalysis, Approximationstheorie, Numerische Mathematik." (L. Collatz, G. Meinardus, and H. Unger, ed.) pp. 42–47. Birkhäuser Verlag, Basel, 1967.
- 6. HARVEY S. PRICE AND RICHARD S. VARGA, Numerical analysis of simplified mathematical models of fluid flow in porous media. *Proceedings of Symposia in Applied Mathematics*, Vol. XX (to appear). American Mathematical Society, Providence.
- RICHARD S. VARGA, On higher order stable implicit methods for solving parabolic partial differential equations. J. Math. Phys. 40 (1961), 220-231.
- J. L. WALSH, The convergence of sequences of rational functions of best approximation with some free poles. *In* "Approximations of Functions." (H. L. Garabedian, ed.) pp. 1–16. Elsevier Publishing Co., New York, 1965.
- 9. HELMUT WERNER, "Vorlesung über Approximationstheorie." Springer-Verlag, New York, 1966.